Você está aqui Mundo Educação Matemática Operação com racionais Transformação para números fracionários

Transformação para números fracionários

Para fazer essas transformações iremos utilizar exemplos:

Número inteiro em fração

Se pegarmos o número 5 para representá-lo em forma de fração basta achar um número que dividido por outro número o resultado seja 5. Por exemplo: 10 : 2 ou 20 : 4 ou 300 : 60, então dizemos que:


Números decimais em fração

Se pegarmos o número 0,2 (a leitura dele é dois décimos), é preciso lembrar que décimo vem de dez, assim como centésimos vem de cem e milésimo vem de mil, então para transformar 0,2 em fração basta eliminar a vírgula ficando o número 2, assim o denominador será o número que representa a casa decimal, então:



1,25 (sua leitura é um inteiro e vinte e cinco centésimos), retirando a vírgula fica 125 no numerador, o denominador fica 100, pois as casas decimais estão em centésimos. 

 

Se dividirmos o numerador de cada fração acima pelo denominador correspondente, chegaremos ao valor decimal correspondente a ele.

Dízima periódica em fração

Primeiro vamos falar o que é uma dízima periódica.
Dizima periódica é a parte decimal infinita (não tem fim), pois repete igualmente. Por exemplo: 0,22222.... ; 2,5656565656.... ; 0,2555... .

Esses números podem ser escritos em forma de fração, mas apesar de serem números decimais na sua transformação utilizaremos um processo diferente. Acompanhe o raciocínio:

Exemplo 1:
Vamos transformar 0,2222... em fração. Pra isso chamaremos a dízima de X:

X = 0,2222... (I)

Devemos eliminar as casas decimais. Para isso andaremos com a vírgula para a direita uma casa decimal, pois apenas o 2 que repete. Isso é o mesmo que multiplicar o 0,2222... por 10. Ficando assim:

10 . X = 2,2222... (II)

Temos duas equações (I) e (II). Iremos subtrair as duas:

             (II) – (I)


Como X = 0,2222.... , então 0, 2222.... é o mesmo que
Se dividirmos 2 : 9 chegaremos a 0, 2222.... .


Exemplo 2:
Temos a dízima 0, 636363...

X = 0,636363.... (I) andando com a vírgula duas casas para a direita, pois o número que
repete nas casas decimais é o 63.

100 . X = 63,636363.... (II) andar duas casas para a direita é o mesmo que multiplicar
por 100.

Subtraindo as duas equações (II) e (I) encontradas:



Como X = 0,636363... então 0,636363... é o mesmo que


Exemplo 2:
Temos a dízima 2,35555... nessa percebemos que na parte decimal temos apenas o 5.

X = 2,35555...

Como o 3 não faz parte da dízima devemos multiplicar a equação por 10 para que o número 3 passe pro outro lado deixando nas casas decimais apenas a dízima.

10 . X = 23,5555... (I)
Agora, multiplicamos a equação (I) por 10 novamente para que possamos cancelar a parte decimal.

10 . 10 . X = 235,5555...
100 X = 235,5555... (II)

Subtraindo as equações (II) e (I), teremos:



Como X = 2,35555... então 2,35555... é o mesmo que


Essas são as transformações mais importantes.

Assuntos Relacionados



Deixe seu comentário para

Transformação para números fracionários








114 comentários

Faça seu Login

  • sexta-feira | 06/06/2014 | luiza
    Usuário

    super demais me ajudo muiito

  • terça-feira | 06/05/2014 | luana
    Usuário

    cara vcs me ajudaram muito, eu precisava muito saber disso pq eu tenho prova de matemática e educação fisíca amanhã.

  • sexta-feira | 04/04/2014 | Priscila Styles
    Usuário

    Muito legal, gostei mt .. vai ajudar d+ na prova =)

  • terça-feira | 18/06/2013 | Ana Luiza
    Usuário

    NÃO ME AJUDOU , FIQUEI COM MAIS DÚVIDA AINDA , SE SOUBESSE NEM TERIA ENTRADO