Você está aqui Mundo Educação Matemática Equação Sistema de equação

Sistema de equação

Para encontrarmos numa equação de 1º grau com duas incógnitas, por exemplo,
4x + 3y = 0, os valores de x e de y é preciso relacionar essa equação com outra ou outras com as mesmas incógnitas. Essa relação é chamada de sistema.

Um sistema de equação de 1º grau com duas incógnitas é formado por: duas equações de 1º grau com duas incógnitas diferentes em cada equação. Veja um exemplo:



Para encontramos o par ordenado solução desse sistema é preciso utilizar dois métodos para a sua solução.
Esses dois métodos são: Substituição e Adição.

Método da substituição
Esse método consiste em escolher uma das duas equações, isolar uma das incógnitas e substituir na outra equação, veja como:

Dado o sistema  , enumeramos as equações.



Escolhemos a equação 1 e isolamos o x:

x + y = 20
x = 20 – y

Agora na equação 2 substituímos o valor de x = 20 – y.

 3x   +   4 y   = 72
3 (20 – y) + 4y = 72 
 60-3y + 4y  = 72
 -3y + 4y   =   72 – 60
       y = 12

Descobrimos o valor de y, para descobrir o valor de x basta substituir 12 na equação
x = 20 – y.
x = 20 – y
x = 20 – 12
x = 8

Portanto, a solução do sistema é S = (8, 12)

Método da adição

Esse método consiste em adicionar as duas equações de tal forma que a soma de uma das incógnitas seja zero. Para que isso aconteça será preciso que multipliquemos algumas vezes as duas equações ou apenas uma equação por números inteiros para que a soma de uma das incógnitas seja zero.

Dado o sistema:



Para adicionarmos as duas equações e a soma de uma das incógnitas de zero, teremos que multiplicar a primeira equação por – 3.



Agora, o sistema fica assim:



Adicionando as duas equações:

       - 3x – 3y = - 60
+     3x + 4y = 72
                 y   = 12

Para descobrirmos o valor de x basta escolher uma das duas equações e substituir o valor de y encontrado:

x + y = 20
x + 12 = 20
x = 20 – 12
x = 8

Portanto, a solução desse sistema é: S = (8, 12).

Se resolver um sistema utilizando qualquer um dois métodos o valor da solução será sempre o mesmo.

Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto

Assuntos Relacionados



Deixe seu comentário para

Sistema de equação








344 comentários

Faça seu Login

  • quarta-feira | 19/08/2015 | Julia
    Usuário

    Muito dificil

  • quarta-feira | 27/05/2015 | Luana
    Usuário

    Texto muito bem explicado! Foi escrito em uma linguagem fácil, até parece que tem alguém me explicando ao vivo, assim fica muito mais fácil de se aprender. Me lembrei rapidinho da matéria, rss...

  • segunda-feira | 25/05/2015 | Albino...
    Usuário

    Realmente ajudou-me a refrescar a memoria. Continuem assim, ensinando os futuros cientistas.

  • segunda-feira | 04/05/2015 | Samuel bamo
    Usuário

    Obrigado, deu pra a prender