Você está aqui Mundo Educação Matemática Matriz e determinantes Igualdade entre matrizes

Igualdade entre matrizes

Para que duas ou mais matrizes sejam consideradas iguais elas devem obedecer a algumas regras:

• Devem ter a mesma ordem, ou seja, o mesmo número de linhas e o mesmo número de colunas.
• Os elementos devem ser iguais aos seus correspondentes.

Portanto, podemos concluir que:
A matriz A2x2 é igual a matriz B se, somente se, a matriz B tiver também a ordem 2x2 e os elementos a11 = b11, a21 = b21, a12 = b12 e a22 = b22.

Veja um exemplo de matrizes:

As matrizes A e B são iguais, pois preenchem todos os requisitos de igualdade de matrizes.

A igualdade de matrizes pode ser cobrada em exercícios, veja o exemplo abaixo:

Encontre os valores numéricos de a, b, x e y sabendo que a igualdade das matrizes abaixo é verdadeira.



Como as duas matrizes são iguais os seus elementos correspondentes também devem ser iguais, assim iremos formar um sistema que nos possibilitará a encontrar os valores desconhecidos.

a + b = 12 (3)
-3a + 2b = 9

+ 3a + 3b = 36
-3a + 2b = 9
5b = 45
b = 9

a + b = 12
a + 9 = 12
a = 12 – 9
a = 3



+ x – y = 3
-x + 2y = 2
y = 5

x – y = 3
x – 5 = 3
x = 3 + 5
x = 8

Assuntos Relacionados



Deixe seu comentário para

Igualdade entre matrizes








14 comentários

Faça seu Login

  • terça-feira | 30/10/2012 | gilmara
    Usuário

    gostei muito da explicacao aprade muito era o q eu estava presizando!

  • quarta-feira | 22/08/2012 | Danielly
    Usuário

    eu adorie estudar matrizes super facil

  • terça-feira | 28/02/2012 | diego
    Usuário

    perdi ponto numa prova por que não sabia o que fazer... não sabia que tinha que fazer a mesma coisa que o exemplo... valeu!!!

  • domingo | 27/11/2011 | larissa
    Usuário

    gostei da explicação. agora ficou bem claro o assunto....