Você está aqui Mundo Educação Matemática Equação Equação de 1º grau com duas incógnitas

Equação de 1º grau com duas incógnitas

Equação de 1º grau com duas incógnitas
Forma de calcular a equação de 1º grau com duas incógnitas

Toda equação do 1º grau com uma incógnita é representada pela forma geral ax + b = c, com a, b e c pertencentes aos números reais, sendo a ≠ 0.

As equações do 1º grau com duas incógnitas são representadas pela expressão ax + by = c, com a ≠ 0, b ≠ 0 e c assumindo qualquer valor real. Nesse modelo de equação, os valores de x e y estão ligados através de uma relação de dependência. Observe exemplos de equações com duas incógnitas:

10x – 2y = 0
x – y = – 8
7x + y = 5
12x + 5y = – 10
50x – 6y = 32
8x + 11y = 12


Essa relação de dependência pode ser denominada de par ordenado (x, y) da equação, os valores de x dependem dos valores de y e vice versa. Atribuindo valores a qualquer uma das incógnitas descobrimos os valores correlacionados a elas. Por exemplo, na equação
3x + 7y = 5, vamos substituir o valor de y por 2:

3x + 7*2 = 5
3x + 14 = 5
3x = 5 – 14
3x = – 9
x = – 9 / 3
x = – 3
Temos que para y = 2, x = – 3, estabelecendo o par ordenado (–3, 2).


Exemplo 1

Dada a equação 4x – 3y = 11, encontre o valor de y, quando x assumir valor igual a 2.

x = 2
4*2 – 3y = 11
8 – 3y = 11
– 3y = 11 – 8
– 3y = 3   (multiplicar por – 1)
3y = – 3
y = – 3/3
y = – 1
Estabelecendo x = 2, temos y = – 1, constituindo o par ordenado (2, –1).

A determinação do par ordenado é de grande importância para a construção da reta representativa da equação do 1º grau no plano cartesiano. Esses conceitos são muito utilizados na elaboração de gráficos de funções, como na Geometria Analítica que relaciona os estudos algébricos com a Geometria, sendo de extrema importância para o cotidiano matemático.

Assuntos Relacionados



Deixe seu comentário para

Equação de 1º grau com duas incógnitas








88 comentários

Faça seu Login

  • terça-feira | 26/08/2014 | jansen
    Usuário

    gente alguém me ajuda nessa equaçao13+4(2x-1)=5(X+2)

  • terça-feira | 22/07/2014 | Paulo
    Usuário

    Amigo pode resolver esse problema, com equação de 1º grau? A professora distribuiu 9 bombons para cada aluno da sala e sobraram 13 bombons, se tivesse dado 10 bombons no final iria faltar 10. preciso urgente, por favor... Obrigado!!!

  • terça-feira | 11/03/2014 | Domingossenduca
    Usuário

    valeu gostei muinto

  • quarta-feira | 22/01/2014 | emanuele
    Usuário

    essa explicacao ta me ajudando muito para eu fazer a recoperacao de matematica